skip to main content


Search for: All records

Creators/Authors contains: "Monelli, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the properties of the mixed-mode (RRd) RR Lyrae (RRL) variables in the Fornax dwarf spheroidal (dSph) galaxy by using B- and V-band time series collected over 24 yr. We compare the properties of the RRds in Fornax with those in the Magellanic Clouds and in nearby dSphs, with special focus on Sculptor. We found that the ratio of RRds over the total number of RRLs decreases with metallicity. Typically, dSphs have very few RRds with 0.49≲ P0 ≲0.53 d, but Fornax fills this period gap in the Petersen diagram (ratio between first overtone over fundamental period versus fundamental period). We also found that the distribution in the Petersen diagram of Fornax RRds is similar to Small Magellanic Cloud (SMC) RRds, thus suggesting that their old stars have a similar metallicity distribution. We introduce the Period–Amplitude RatioS diagram, a new pulsation diagnostics independent of distance and reddening. We found that Large Magellanic Cloud (LMC) RRds in this plane are distributed along a short- and a long-period sequence that we identified as the metal-rich and the metal-poor component. These two groups are also clearly separated in the Petersen and Bailey (luminosity amplitude versus logarithmic period) diagrams. This circumstantial evidence indicates that the two groups have different evolutionary properties. All the pulsation diagnostics adopted in this investigation suggest that old stellar populations in Fornax and Sculptor dSphs underwent different chemical enrichment histories. Fornax RRds are similar to SMC RRds, while Sculptor RRds are more similar to the metal-rich component of the LMC RRds.

     
    more » « less
  2. ABSTRACT We use the SMASH survey to obtain unprecedented deep photometry reaching down to the oldest main-sequence turn-offs in the colour–magnitude diagrams (CMDs) of the Small Magellanic Cloud (SMC) and quantitatively derive its star formation history (SFH) using CMD fitting techniques. We identify five distinctive peaks of star formation in the last 3.5 Gyr, at ∼3, ∼2, ∼1.1, ∼0.45 Gyr ago, and one presently. We compare these to the SFH of the Large Magellanic Cloud (LMC), finding unequivocal synchronicity, with both galaxies displaying similar periods of enhanced star formation over the past ∼3.5 Gyr. The parallelism between their SFHs indicates that tidal interactions between the MCs have recurrently played an important role in their evolution for at least the last ∼3.5 Gyr, tidally truncating the SMC and shaping the LMC’s spiral arm. We show, for the first time, an SMC–LMC correlated SFH at recent times in which enhancements of star formation are localized in the northern spiral arm of the LMC, and globally across the SMC. These novel findings should be used to constrain not only the orbital history of the MCs but also how star formation should be treated in simulations. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The Large Magellanic Cloud (LMC) is the closest and most studied example of an irregular galaxy. Among its principal defining morphological features, its off-centred bar and single spiral arm stand out, defining a whole family of galaxies known as the Magellanic spirals (Sm). These structures are thought to be triggered by tidal interactions and possibly maintained via gas accretion. However, it is still unknown whether they are long-lived stable structures. In this work, by combining photometry that reaches down to the oldest main sequence turn-off in the colour-magnitude diagrams (CMD, up to a distance of ∼4.4 kpc from the LMC centre) from the SMASH survey and CMD fitting techniques, we find compelling evidence supporting the long-term stability of the LMC spiral arm, dating the origin of this structure to more than 2 Gyr ago. The evidence suggests that the close encounter between the LMC and the Small Magellanic Cloud (SMC) that produced the gaseous Magellanic Stream and its Leading Arm also triggered the formation of the LMC’s spiral arm. Given the mass difference between the Clouds and the notable consequences of this interaction, we can speculate that this should have been one of their closest encounters. These results set important constraints on the timing of LMC-SMC collisions, as well as on the physics behind star formation induced by tidal encounters. 
    more » « less
  6. null (Ed.)